生活百科 | 烹飪美食 | 家居裝修 | 購房置業 | 婚嫁 | 家電 | 寵物 | 育兒 | 購物|
您現在的位置: 大眾科普 >> 生活 >> 高斯是什麼家正文

高斯是什麼家

 推 薦 文 章
更新時間:2022-05-18
rebka)把钴57發射的射線從22.6m高的塔頂射向地面的接收器,運用穆斯堡爾效應測量塔底處的頻率改變量.這實際是一個引力藍移實驗.他們的實驗相當成功,實際測量值與理論值的不確定度在5%之內.



第四個雷達回波延遲實驗
在上面討論的三大驗證實驗之外,夏皮羅(i.shapiro)於1964年提出用雷達回波延遲實驗檢驗廣義相對論的建議.廣義相對論認為,物質的存在和運動造成周圍時空的彎曲,光線在大質量物體附近的彎曲可以看作一種折射,相當於光速的變慢.從地球上向某一行星發射一束雷達波,雷達波到達行星表面後被反射回地球,就可以測出來回一次所需的時間.將雷達波經由太陽附近傳播的來回時間與遠離太陽附近傳播的來回時間相比較,就可以得到雷達回波延遲的時間.
夏皮羅領導的小組先後對水星、金星、火星進行了雷達回波延遲實驗,後期的實驗數據與廣義相對論理論值的不確定度已在1%左右.20世紀80年代初,利用在火星表面登陸的“海盜號”探測器反射雷達波,已使雷達回波延遲實驗測量值的不確定度減小到0.1%,有力地支持了廣義相對論理論.這被認為是廣義相對論的第四個重大驗證實驗.
愛因斯坦的第二種相對性理論(1916年)。該理論認為引力是由空間——時間幾何(也就是,不僅考慮空間中的點之間,而是考慮在空間和時間中的點之間距離的幾何)的畸變引起的,因而引力場影響時間和距離的測量.

廣義相對論:愛因斯坦的基於科學定律對所有的觀察者(而不管他們如何運動的)必須是相同的觀念的理論。它將引力按照四維空間—時間的曲率來解釋。

廣義相對論(generalrelativity‎)是愛因斯坦於1915年以幾何語言建立而成的引力理論,統合了狹義相對論和牛頓的萬有引力定律,將引力改描述成因時空中的物質與能量而彎曲的時空,以取代傳統對於引力是一種力的看法。因此,狹義相對論和萬有引力定律,都只是廣義相對論在特殊情況之下的特例。狹義相對論是在沒有重力時的情況;而萬有引力定律則是在距離近、引力小和速度慢時的情況。

背景

愛因斯坦在1907年發表了一篇探討光線在狹義相對論中,重力和加速度對其影響的論文,廣義相對論的雛型就此開始形成。1912年,愛因斯坦發表了另外一篇論文,探討如何將重力場用幾何的語言來描述。至此,廣義相對論的運動學出現了。到了1915年,愛因斯坦場方程式被發表了出來,整個廣義相對論的動力學才終於完成。

1915年後,廣義相對論的發展多集中在解開場方程式上,解答的物理解釋以及尋求可能的實驗與觀測也占了很大的一部份。但因為場方程式是一個非線性偏微分方程,很難得出解來,所以在電腦開始應用在科學上之前,也只有少數的解被解出來而已。其中最著名的有三個解:史瓦西解(theschwarzschildsolution(1916)),thereissner-nordströmsolutionandthekerrsolution。

在廣義相對論的觀測上,也有著許多的進展。水星的歲差是第一個證明廣義相對論是正確的證據,這是在相對論出現之前就已經量測到的現象,直到廣義相對論被愛因斯坦發現之後,才得到了理論的說明。第二個實驗則是1919年愛丁頓在非洲趁日蝕的時候量測星光因太陽的重力場所產生的偏折,和廣義相對論所預測的一模一樣。這時,廣義相對論的理論已被大眾和大多的物理學家廣泛地接受了。之後,更有許多的實驗去測試廣義相對論的理論,並且證實了廣義相對論的正確。

另外,宇宙的膨漲也創造出了廣義相對論的另一場高潮。從1922年開始,研究者們就發現場方程式所得出的解答會是一個膨漲中的宇宙,而愛因斯坦在那時自然也不相信宇宙會來漲縮,所以他便在場方程式中加入了一個宇宙常數來使場方程式可以解出一個隱定宇宙的解出來。但是這個解有兩個問題。在理論上,一個隱定宇宙的解在訴學上不是穩定。另外在觀測上,1929年,哈伯發現了宇宙其實是在膨漲的,這個實驗結果使得愛因斯坦放棄了宇宙常數,並宣稱這是我一生最大的錯誤(thebiggestblunderinmycareer)。

但根據最近的一形超新星的觀察,宇宙膨脹正在加速。所以宇宙常數似乎有敗部復活的可能性,宇宙中存在的暗能量可能就必須用宇宙常數來解釋.

基本假設

等效原理:引力和慣性力是完全等效的。

廣義相對性原理:物理定律的形式在一切參考系都是不變的。

主要內容

愛因斯坦提出“等效原理”,即引力和慣性力是等效的。這一原理建立在引力質量與慣性質量的等價性上。根據等效原理,愛因斯坦把狹義相對性原理推廣為廣義相對性原理,即物理定律的形式在一切參考系都是不變的。物體的運動方程即該參考系中的測地線方程。測地線方程與物體自身固有性質無關,只取決於時空局域幾何性質。而引力正是時空局域幾何性質的表現。物質質量的存在會造成時空的彎曲,在彎曲的時空中,物體仍然順著最短距離進行運動(即沿著測地線運動——在歐氏空間中即是直線運動),如地球在太陽造成的彎曲時空中的測地線運動,實際是繞著太陽轉,造成引力作用效應。正如在彎曲的地球表面上,如果以直線運動,實際是繞著地球表面的大圓走。

引力是時空局域幾何性質的表現。雖然廣義相對論是愛因斯坦創立的,但是它的數學基礎的源頭可以追溯到歐氏幾何的公理和數個世紀以來為證明歐幾裡德第五公設(即平行線永遠保持等距)所做的努力,這方面的努力在羅巴切夫斯基、bolyai、高斯的工作中到達了頂點:他們指出歐氏第五公設是不能用前四條公設證明的。非歐幾何的一般數學理論是由高斯的學生黎曼發展出來的。所以也稱為黎曼幾何或曲面幾何,在愛因斯坦發展出廣義相對論之前,人們都認為非歐幾何是無法應用到真實世界中來的。

在廣義相對論中,引力的作用被“幾何化”——即是說:狹義相對論的闵氏空間背景加上萬有引力的物理圖景在廣義相對論中變成了黎曼空間背景下不受力(假設沒有電磁等相互作用)的自由運動的物理圖景,其動力學方程與自身質量無關而成為測地線方程:

簡單的說就是空間在引力場的作用下會發生彎曲.
 

上一页  [1] [2] [3] 

64個平米的房子怎樣裝潢省錢 
版權所有 © 大眾科普網(www.g06.net) 免責聲明